2 resultados para CELL-LINE

em Institutional Repository of Leibniz University Hannover


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Silver nanoparticles are widely used for many applications. In this study silver nanoparticles have been tested for their toxic effect on fibroblasts (NIH-3T3), on a human lung adenocarcinoma epithelial cell line (A-549), on PC-12-cells, a rat adrenal pheochromocytoma cell line, and on HEP-G2-cells, a human hepatocellular carcinoma cell line. The viability of the cells cultivated with different concentrations of silver was determined by the MTT assay, a photometric method to determine cell metabolism. Dose-response curves were extrapolated and IC50, total lethal concentration (TLC), and no observable adverse effect concentration (NOAEC) values were calculated for each cell line. As another approach, ECIS (electric-cell-substrate-impedance-sensing) an automated method to monitor cellular behavior in real-time was applied to observe cells cultivated with silver nanoparticles. To identify the type of cell death the membrane integrity was analyzed by measurements of the lactate dehydrogenase releases and by determination of the caspase 3/7 activity. To ensure that the cytotoxic effect of silver nanoparticles is not traced back to the presence of Ag+ ions in the suspension, an Ag+ salt (AgNO3) has been examined at the same concentration of Ag+ present in the silver nanoparticle suspension that is assuming that the Ag particles are completely available as Ag+ ions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In the context of this work we evaluated a multisensory, noninvasive prototype platform for shake flask cultivations by monitoring three basic parameters (pH, pO2 and biomass). The focus lies on the evaluation of the biomass sensor based on backward light scattering. The application spectrum was expanded to four new organisms in addition to E. coli K12 and S. cerevisiae [1]. It could be shown that the sensor is appropriate for a wide range of standard microorganisms, e.g., L. zeae, K. pastoris, A. niger and CHO-K1. The biomass sensor signal could successfully be correlated and calibrated with well-known measurement methods like OD600, cell dry weight (CDW) and cell concentration. Logarithmic and Bleasdale-Nelder derived functions were adequate for data fitting. Measurements at low cell concentrations proved to be critical in terms of a high signal to noise ratio, but the integration of a custom made light shade in the shake flask improved these measurements significantly. This sensor based measurement method has a high potential to initiate a new generation of online bioprocess monitoring. Metabolic studies will particularly benefit from the multisensory data acquisition. The sensor is already used in labscale experiments for shake flask cultivations.